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ABSTRACT 

DEVELOPMENT OF AN ORIENTED-EDDY COLLISION MODEL 

 

SEPTEMBER 2008 

 

RAEANN ANDEME, M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Blair J. Perot 

 

 

 

The exact governing equations of fluid dynamics are too computationally 

expensive to solve on a computer for practical applications. Hence, it is currently not 

possible to analytically describe the behavior of a turbulent flow -in particular its 

internal structures-, making turbulence one of the major remaining unsolved problems 

in Classical Physics. One solution to computationally predict the performance of 

engineering applications involving fluids is the formulation of alternative and 

computationally tractable equations. This work demonstrates the feasibility of modeling 

turbulence as a collection of interacting particles with intrinsic orientation. It also 

discusses current efforts regarding its accuracy and computational overhead in 

numerous turbulent flows.  The goal of this thesis is to focus on numerical 

implementation as well as model evaluation and validation. The Oriented-Eddy 

Collision Model is tested for basic flow cases and incorporated inhomogeneity. The 

project is successful in demonstrating that with appropriate extensions, the model can 

be applied to a very wide variety of turbulent flows with high predictive accuracy.  
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CHAPTER 1 

INTRODUCTION 

   

In the book Computational Methods for Fluid Dynamics, Ferziger and Peric define 

fluids “as substances whose molecular structure offers no resistance to external shear 

flow.” The governing equations of fluid dynamics, the Navier-Stokes equations, define 

the evolution of mass, momentum and energy of fluid flows whether the flow is laminar, 

transitional or turbulent. In fluid dynamics, turbulence is a flow regime characterized by 

chaotic fluid variations such as energy and dissipatoion. Turbulent flows represent most 

flows encountered in engineering practice and therefore carry some importance. There 

are multiple applications of turbulent flows such as the dispersion of pollutants in the 

atmosphere, weather prediction, channel flow, internal combustions engines, gas turbines, 

external flow over airplanes, submarines.  

It is currently not possible to analytically describe the behavior of a turbulent flow -in 

particular its internal structures-, making turbulence one of the major remaining unsolved 

problems in Classical Physics. Howewer, there are some known approaches to predicting 

turbulent flows. The first one involves the use of correlations such as the ones that give 

the friction factor as a function of the Reynolds number. This method is limited to 

extremely simple flows that are characterizable by just a few parameters. The down-side 

of this approach is the lack of flexibility. Currently, the three main approaches that are 

extensively used by Computational Fluid Dynamics (CFD) users and researchers are the 

Reynolds-averaged Navier-Stokes (or RANS) equations, Direct Numerical Simulation 

(DNS) and Large Eddy Simulation (LES). RANS is a method based on equations 

obtained by averaging the equations of motion over ensembles. This is equivalent to time 
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averaging in a statistically steady flow or spatial averaging over a coordinate in which the 

statistics do not vary. The RANS equations do not form a closed set and thus require the 

introduction of approximations of the Reynolds stresses. RANS provides the engineer 

with only the average properties of a turbulent flow such as the average forces on a body, 

the degree of mixing between two incoming streams of fluids, or in chemical engineering 

the reacted amount of some substance. The RANS equations are very similar to the 

governing Navier-Stokes equations except for the unknown Reynolds stress tensor. 

 As of today, the most accurate approach to turbulence solution is Direct Numerical 

Simulations. DNS is very useful in extracting specific information such as the kinetic 

energy or the dissipation rate. This approach solves the Navier-Stokes equations for all of 

the motions in a turbulent flow and therefore, does not involve any approximation or 

averaging other than numerical errors. However, the computational cost of DNS is very 

high and increases rapidly with higher Reynolds numbers. For the Reynolds numbers 

encountered in most industrial applications, the computational resources required by a 

DNS would exceed the capacity of the most powerful computer available in 100 years. 

However, direct numerical simulation is a useful tool in fundamental research in 

turbulence. In addition, DNS is useful in the development of turbulence models for 

practical applications. Results obtained from DNS are extremely detailed, making DNS a 

very expensive and inappropriate tool for engineering design.  

Finally, LES compromises between one point closure methods -like RANS- and 

direct solution methods such as DNS. This technique solves for the largest scale motions 

while modeling only the small scale motions. Because the large scale motions generally 

contain more energy than the small scale ones, this approach can capture much of the 
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actual physics using first principles. LES is three dimensional, time dependent and less 

expensive than DNS. DNS is useful in developing LES since it allows for both “a priori”  

(the input data for the model is taken from a DNS simulation) and "a posteriori" tests   

(the results produced by the model are compared to those obtained by DNS). In our 

research, DNS, LES and experimental results are used in developing the Oriented Eddy 

Collision (OEC) model for predicting turbulence.  
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CHAPTER 2 

ORIENTED-EDDY COLLISION MODEL 

 

2.1. Summary 

             This thesis demonstrates the feasibility of modeling turbulence as a collection of 

interacting (colliding) particles with intrinsic orientation as shown in Figure 1 below:  

 

Figure 1: Oriented-Eddy Collision Illustration 

The model tracks the average behavior of each of these particles. Previous work has 

shown that the eddy collision model can capture important physical processes (such as 

fast pressure-strain effects and strong inhomogeneity) using no model constants. The 

remaining important physical processes (slow pressure-strain and the return to isotropy) 

can be captured by adding information and additional terms to the collision model. This 

thesis continues the work of Chartrand (Eddy Collision Models for Turbulence
64

), on the 

development of the Oriented Eddy Collision Model and also tests its accuracy and 

computational overhead in numerous turbulent flows. We focus on the numerical 

implementation as well as the model evaluation and validation. In addition, we tested the 

model for basic flow cases and incorporated inhomogeneity by deriving and 

implementing the rotation and diffusion terms adapted to the eddy collision model in our 

code.  
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2.2. Oriented Eddy Collision Model Advantages 

             The collision model approach has a number of advantages over classic Reynolds 

stress transport (RST) models. For instance, the collision model is an approach to two-

point correlation equations while RANS is a single-point correlation approach. In 

addition, mathematical constraints like realisability are automatically satisfied and a 

wider variety of models can be envisioned. In addition, because the approach is different, 

new insights into old problems can be obtained. The un-oriented collisional approach 

retain the difficulties of RST models, In particular, two critical parts of the model, the fast 

pressure-strain term and the dissipation transport equation, still require complex 

modeling terms with multiple model ‘constants’. By allowing eddies to have an 

orientation as in the current approach, these difficulties are removed. The orientation is 

the reason why RDT and rapid pressure-strain can be captured exactly (see Chartrand
64 

pp.15-16). It allows the model to specifically represent how eddies stretch and deform. 

In summary, after testing numerous models for numerous flow cases, we can say 

that the oriented eddy collision model is: 

� More predictive than RANS 

� Computationally achievable 

� Uses fewer model constants than RANS 

� Is more expensive than RANS, but less expensive than DNS 

 

2.3. Oriented Eddy Collision Model Equations 

Two main equations are used to represent the oriented collision model. The first 

one represents ˆ
ij

R , which is the Reynolds stress (average velocity fluctuations) for one 
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orientation 
i

k (see equation 2.3.2 below). The orientation vector,
i

k , has units of 1/length 

and captures the eddy size and orientation. 

( ) ( )
( ) ( )� ( ) ( )

2 2

2 2

* *

, , , , ,

2 1 1 1

ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ

j li l

ji

R K R

k kk k

ij t jk i k l k il ik j k l k jlk k

kk

L H ij H ij i lj li l T ijk k

R R u u R u u

k R D n R R m Rτ τ τ

δ δ

α ν α α ν ν

  = + − + + −   

− + − − + + +∇ + ∇
 (2.3.1) 

where  

( )� ( )� ( ) ( )1
2

/ 2ˆ1 1

R K

q p
NK k
K k

K kτ τ= =        (2.3.2) 

The total Reynolds stress defined as Rij is the averaged sum of the individual ˆ
ijR , 

meaning
1 ˆ

ij ij
R R

N
= Σ . Equation (2.3.1) has seven grouped terms. The mean flow gradients 

and system rotation is accounted for by *

, ,i k i k ikj ku u e= + Ω , with kΩ being the rotation 

vector for a non-inertial frame.  The dissipative behavior of the model is captured 

by ( )2 1 ˆ
RL H ijk Rτα ν α+  and ( )�1

RH ijDτα  is the return-to-isotropy model discussed in section 

3.3 below. The factor ( )�1

Rτ
 is the timescale used to model the dissipation. 1

R i
nτ  is the 

rotation term. The sixth term ( )2 2
ˆ ˆ ji

kk

lj li lk k
R R m+  arises from the need to maintain 

orthogonality ( 0ij iR k = ) between the orientations and the ˆ
ijR ( lm is the k-return model). 

Incompressibility requires 0ij iR k = . The final term ( ) ˆ
T ijRν ν∇ + ∇ models the diffusive 

action of the Reynolds stresses. 

The second equation represents the orientation ik  with its time-derivative defined 

as: 

( )�2 1 1 1
, ,

1
( ) ( )

R R Ri t k k i L H i i i T i
k k u k k n m k

l
τ τ τα α ν ν= − − ν + + + +∇ + ∇  (2.3.3) 
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The above equation contains six grouped terms. The first terms captures the mean 

gradient effects (shear). This term is the equation for passive disks. Just as in (2.3.1), the 

second term captures the dissipation; l  takes on the value 3 or 5 respectively for the 2
k̂  

or 4
k̂  low wave number.  The third term in present in 1

R i
nτ models the secondary rotation 

effects and im is the return model for the orientations. The last term, 

( )
T i

kν ν∇ + ∇ accounts for the diffusive action of the orientation vectors ik . 

In addition, the general formula for dissipation is: 

,tKε = −         (2.3.4) 

 and 

( )�* 2 1
, , ,

ˆ ˆ2
Rt ik i k i k L H ij

K R u u k K Dτα ν α = − − − ∑ ∑ ∑                            (2.3.5) 

 Hence,  

 ( )�* 2 1
, ,

ˆ ˆ2
Rik i k i k L H ij

R u u k K Dτε α ν α = − + + ∑ ∑ ∑                              (2.3.6) 

With isotropy present, the first term of equation (2.3.6) disappears, resulting in 

( )�2 1

RL H ij
k K Dτε α ν α = +  ∑       (2.3.7)   

where  

ˆK K=∑          (2.3.8) 

2 21
N

k k= ∑         (2.3.9) 
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2.4. Two point correlation equation 

The unknowns in the oriented eddy model are closely related to the two-point 

correlations. In this section, we take a brief look at this relationship. 

Assuming 

ˆ( , ) ( )ij ijR x r R F k r≈ ∑ ⋅
rr r r

      (2.4.1) 

where ( )F η is a simple function of r
r

, the distance between two points. 

Considering the specific case where
,

( , )
k r

F k r e
−

=
r rr r

, 

ˆ( , )
k r

ij ijR x r R e
− ⋅

= ∑
r rr r

       (2.4.2) 

When looking at the two-point correlation in the x-direction for example, we get 

1 1 2 2 3 3

11 1 2 3 11
ˆ( , , )

k r k r k r
R r r r R e

− + +≈ ∑      (2.4.3) 

Similarly for R22 and R33: 

1 1 2 2 3 3

22 1 2 3 22
ˆ( , , )

k r k r k r
R r r r R e

− + +≈ ∑      (2.4.4) 

1 1 2 2 3 3

33 1 2 3 33
ˆ( , , )

k r k r k r
R r r r R e

− + +≈ ∑      (2.4.5) 

 

 

 

 

Hence, we obtained the contour plots shown in Figure 2a: 
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Figure 2a: R11, R22 and R33 as seen from the r3-direction. 
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DNS  two-point correlation data corresponding to the first two figures above (OEC model) 

is shown below in Figure 2b.  The shapes are very similar.   The mesh size used in the 

DNS simulation was 768 by 768 by 1536 cells, with a domain size of 56.54 by 56.54 by 

113.09 centimeters.   

 

 
 

 
 

Figure 2b: A planar slice of a three dimensional R11 and R22 two-point correlation in the X-Y 

plane about Z=0.   

 

Hence, the similarity of Figures 1a and 1b above validates the OEC model. 
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CHAPTER 3 

NUMERICAL RESULTS 

Below is the table that summarizes the different sections and results of the current 

project. 

 

 

Table 1: Research Summary 

 

3.1. Isotropic Decay Simulations 

In general, when the properties of a material are the same in all directions, the 

material is said to be isotropic. In the case of turbulence, if the fluctuations are 

independent of direction, the turbulence is isotropic. When the fluctuations do not have 

Oriented 

Eddy 

Collision 

Model 

Isotropic Decay 

Return to 

Isotropy Models 

Shear/Strain 

Flows 

Diffusion: 

Inhomogeneous 

Flows 

Decaying Grid Turbulence 

Rotating Decaying Turbulence 

(Rotation Model) 

R-Return Model 

K-Return Model 

Rapid Distortion Theory 
 

Irrotational Strain 

Shear Flow 

(Rotation Model) 

Local Eddy-Viscosity Model 

Global Eddy-Viscosity Model 
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any directional preference, then the off-diagonal components of ijR  vanish, and 

11 22 33R R R= = . Mathematically, this corresponds to ij ij

2
R = K 

3
δ .  

In this work, it is necessary to define isotropy for the orientations as well. For isotropy, 

all orientation vectors have the same magnitude and are uniformly distributed on the 

sphere. 

 

3.1.1. Isotropic Decay 

            Von Karman & Howarth
54

 first suggested in 1938 that the decaying 

turbulence should have a power law behavior of the form:    

0
0

0

1

n

t
K K

nK

ε
−

 
= + 

 
       (3.1.1.1) 

 where 0K  is the initial turbulent kinetic energy and 0ε  represents the initial 

dissipation, and n is the decay exponent. While all researchers agree on the power law 

form, there is less agreement on what the value for n should be. However, most 

investigators agree that the exponent n is highly dependent on the low wavenumber k̂  of 

the energy spectrum
13

 In the case where the low wavenumber portion of the spectrum 

goes as 2
k̂ , n corresponds to 3/2 at low Reynolds number and 6/5 at high Reynolds 

number. On the other hand, when the low wavenumber portion of the spectrum goes as 4
k̂ , 

n corresponds to 5/2 for low Reynolds number and 10/7 for high Reynolds number. 

We will attempt to obtain all these limits with the OEC model. For isotropic 

decaying turbulence, the dissipation ε  is: 

 
dK

dt
ε = −         (3.1.1.2) 
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Substituting, equation (3.1.1.1) to (3.1.1.2) above, we obtain: 

 

1

0
0

0

1

n

t

nK

ε
ε ε

− −
 

= + 
 

       (3.1.1.3) 

In this section, our model attempts to capture the evolution of n as a function of the 

turbulent Reynolds number (
2

ReT

K

νε
= , with ν being the fluid kinematic viscosity) for 

both 2
k̂  and 4

k̂ . Figure 3 below summarizes the results obtained when the low 

wavenumber behavior of the spectrum is 2
k̂ .  

ReT

n

0.05 0.1 0.20.3 0.5 1 2 3 4 5 7 10 20 30 5070100 200 500 1000
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

αL=6
αL=15

αL=30

n=1.5

n=1.2

Chasnov
Mansour & Wray
αL=6
αL=15
αL=30
Veeravalli
De Bruyn Kops
Wray

 

Figure 3: Power-law exponent as a function of the turbulent Reynolds number for 

a 2
k̂ low wavenumber spectrum. 
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The thick maroon and dark green lines represent our model predictions 

( 6,15,30Lα =  for 1Hα = ). For our purpose, we determined that the ratio 15L

H

α
α

=  

(maroon curve) best matched the DNS simulations of Chasnov
23

, Mansour & Wray
24

 and 

Veeravalli
26

. The upper and lower purple dashed lines included in the figure are the low 

and high Reynolds bounds on n. Notice that the model obtains these limits independent of 

Lα . Also on Figure 3 are shown the exponent values for the DNS of de Bruyn Kops
65

.  
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When the low wavenumber behavior of the spectrum goes as 4
k̂ , we obtained the 

results shown in Figure 4 below. Again, the horizontal green dash lines represent the 

upper (5/2) and lower (10/7) limits of the exponent for 4
k̂ spectrum. The thick purple and 

blue lines are the model predictions for 10,25,50L

H

λ
λ

= . In addition to these curves, there 

are four 128
3
 DNS simulations by Yu et al

55
 and four 256

3
 DNS simulations by Mansour 

& Wray.  For the same reason mentioned above, we determined that 15L

H

λ
λ

=  (not shown) 

is an adequate compromise. Note that this ratio is similar to the one determined above for 

2
k̂ . 

ReT

n

0.05 0.1 0.2 0.3 0.50.7 1 2 3 4 5 6 78 10 20 30 50 70 100
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

αL=10
αL=25
αL=50

n=2.5

n=10/7

Mansour & Wray
Yu et al.

 

Figure 4: Power law exponent as a function of Reynolds number for a 4
k̂  low 

wavenumber spectrum. 
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3.1.2. Kinetic Energy 

            In this section, we focus our efforts on predicting the decay of kinetic 

energy in isotropic flows (other than just the exponent). This is essentially a posteriori 

test of the chosen value 15L

H

λ
λ

= . We test the model against numerous published data: 

some experimental, some LES and other DNS. In determining the kinetic energy, the 

equations used in our model predictions originate from equation 2.3.1 and 2.3.3 above 

with the particularity that the flow is isotropic. Hence, there is no need to include the 

return-to-isotropy ( 0ijD = ) as well as the diffusion terms: ˆ( ) 0T ijRν ν∇ + ∇ = , 

( ) 0
T i

kν ν∇ + ∇ =  . Thus, in cases where no rotation is present, equations (2.3.1 and 2.3.3) 

become:  

( )2 1
,

ˆ ˆ15
Rij t ij

R k Rτν= − +       (3.1.2.1) 

           2 1
,

1
(15 )

Ri t i
k k k

l
τ= − ν +        (3.1.2.2) 

 where 3l =  for 2
k  and 5l =  for 4

k  low wave number spectra 
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Data and model predictions are shown below for low and intermediate turbulent 

Reynolds numbers. In addition, we state all initial conditions in Table 2 below: 

 

 

 Wigeland & 

Nagib
63

 

(exp. Data) 

Mansour, 

Cambon & 

Speziale
62

 

(DNS) 

Jacquin
61

 

(exp. Data) 

de 

Bruyn 

Kops 

& 

Riley
20

 

(DNS) 

Squires
60

 

(LES) 

ε(m
2
/s

3
) 14.85 2.96 2.77 0.93 0.95 11.73 16.43 30.93 0.782 1.27 1.35 

K(m
2
/s

2
) 0.098 0.045 0.029 0.964 0.977 0.15 0.264 0.462 0.087 0.265 0.298 

ν(m
2
/s) 1.8 

e-5 

1.8 

e-5 

1.8 

e-5 

3.67 

e-2 

1.49 

e-2 

1.51 

e-5 

1.51 

e-5 

1.51 

e-5 

1.49 

e-5 

8.6 

e-5 

8.6 

e-5 

ReT 36 38 17 27.2 67.1 127 281 457 655 643 764 

 

Table 2: Initial Conditions 
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In Figure 5, the kinetic energy is represented versus time. The asterisks, the triangles and 

the stars correspond to the experimental data with corresponding ReT=36, 38 and 17 

while the dashed lines correspond to our simulations. 
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Wigeland and Nagib: no rotation
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Figure 5: Wigeland and Nagib’s decaying kinetic energy.  
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In Figure 6, the kinetic energy versus time is shown. The orange dots correspond to the 

experimental data for ReT=27.24 and the purple ones are for ReT=67.1. The solid lines 

correspond to our simulations. Clearly, the OEC model shows good agreement with the 

DNS data of Mansour, Cambon and Speziale
62

.  

 

t

K
 (

m
2
/s

2
)
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1

Mansour, Cambon and Speziale: no rotation
exp. data, ReT=27
exp. data, ReT=67

 

Figure 6: Mansour, Cambon and Speziale’s decaying kinetic energy.  
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Figure 7 shows the kinetic energy versus time. The asterisks correspond to the 

experimental data and the dashed lines correspond to the simulations.  
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Figure 7: Jacquin’s decaying kinetic energy.  
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Figure 8 shows the kinetic energy versus time. The red asterisks correspond to DNS data 

of de Bruyn Kops & Riley
20

 for ReT=655 and the dashed lines correspond to the oriented 

eddy model simulations. 
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Figure 8: de Bruyn Kops & Riley’s decaying kinetic energy. 
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Figure 9 shows the kinetic energy versus time. The green asterisks correspond to the 2
k̂  

experimental data with Re 643T = . The red asterisks represent 4
k̂ data with Re 764T = . 

The blue and pink lines correspond to our simulations. 
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2
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Figure 9: Squires’ decaying kinetic energy for both 2
k̂ and 4

k̂ . 

 

 

Based on the data presented above, it is concluded that the OEC model performs well in 

predicting the decaying kinetic energy for simple (homogeneous, isotropic and 

irrotational) turbulent flows.  
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3.1.3. Rotating Decaying Grid-Turbulence 

            To measure the degree of rotation present in the flow, we used the 

turbulent Rossby number defined as follow: 

ToR
K

ε
∗

=
Ω

        (3.1.3.1) 

Large ToR  means no rotation, whereas To 1R <  implies a flow dominated by rotation. 

With rotation present, the model equations become: 

           

2 1 1
,

1
(15 )

3 R Ri t i i
k k k nτ τ= − ν + −

      (3.1.3.2) 

Three models for the rotation term were tested: 

with 
( )

( )

( )
( )

*

1
2 *2

1 2

*

2
2 *

1 2

2
*

2
2 *

1 2

( | |)

*

( )

2

( )

 

                  or 

    

                  or 

/
  

kA

i i
C k K C k

kB

i i
C k K C

kC

i i
C k K C

n k

n

k
n k

⋅Ω

+ Ω

⋅Ω

+ Ω

⋅Ω

+ Ω

=

= Ω

=

� �

� �

�

� �

�

       (3.1.3.3) 

where * frame

,i ijk k j iUεΩ = +Ω . In our earlier work, (Eddy Collision Models for 

Turbulenc
64

), Chartrand briefly looked at the first two models,  and  A B

i i
n n . However, 

after extensively studying the performance of each of these models and comparing them 

to multiple DNS results, we came to the conclusion that the above two terms each only 

captures a different aspect of the rotation. Hence, the third model was developed.                                                                            

With each model, come two constants 1C  and 2C  that are used to tune the model 

behavior. That is, 1C  and 2C  are both model-dependent. From equations (3.1.3.3) above, 



www.manaraa.com

 24 

it is clear that 2C  affects simulations at large rotation rates while 1C  acts at small rotation 

rates. We used this concept in determining the values for both 1C  and 2C . Table 3 below 

summarizes the values: 

 

 

Model 

 

Formula 

 

C1 

 

C2 

 

k 

*

1
2 *2

1 2( | |)

 
k

i
C k K C k

k
⋅Ω

+ Ω

� �

 
 

8 

 

0.25 

 

Ω 
( )

( )

*

2
2 *

1 2

*

( )
 

k

i
C k K C

⋅Ω

+ Ω
Ω

� �

�  
 

20 

 

¼ 

 

Smooth k 
( )

( )

2
*

2
2 *

1 2

2

( )

/k

i
C k K C

k
k

⋅Ω

+ Ω

� �

�  
 

20 

 

¼ 

 

Table 3: Rotation-models along with their respective tuning constants 1C  and 2C  

 

Next, we compared the performance of each model for three sets of data: Jacquin
61

, 

ManCamSpe (Mansour, Cambon & Speziale
62

) and Blaisdell
7
. The k-smooth model 

outperforms the other two. The initial conditions are shown in Tables 4, 5 and 6 below: 

  

 Mansour, Cambon & Speziale
62

 Jacquin
61

 Blaisdell
7
 

ε(m
2
/s

3
) 0.93 0.95 11.73 16.43 30.93 1.78 

K(m
2
/s

2
) 0.964 0.977 0.153 0.288 0.444 1 

ν(m
2
/s) 3.67e-2 1.49e-2 1.51e-5 1.51e-5 1.51e-5 4.41e-2 

ReT 27.2 67.1 127 281 457 12.75 

RoT 0.37 0.037 0.24 0.1 1.22 0.91 1.10 --- 

S --- --- --- --- --- --- --- 3 

 

Table 4: Initial conditions of Mansour, Cambon & Speziale, Jacquin
 
and Blaisdell. 
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 Wigeland & Nagib
63

 

ε(m
2
/s

3
) 14.67 14.94 3.49 3.36 3.36 22.26 

K(m
2
/s

2
) 0.0975 0.105 0.0462 0.051 0.033 0.096 

ν(m
2
/s) 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 

ReT 36 41 34 43 18 23 

RoT 7.52 1.78 3.77 0.82 5.09 2.9 

 

Table 5: Wigeland & Nagib’s initial conditions. 

 

 

 Shimomura
66

 de Bruyn Kops
65

 Veeravalli
26

 

ε(m
2
/s

3
) 0.024 0.025 0.028 0.0992 7.96 8.13 

K(m
2
/s

2
) 0.098 0.2619 0.5638 5.888e-2 0.17 0.202 

ν(m
2
/s) 8.0e-3 8.0e-3 8.0e-3 1.4854e-5 1.6e-5 1.6e-5 

ReT 50 343 1419 2353 227 313 

RoT N/A 0.095 0.017 0.006 0.5 0.32 

 

Table 6: Initial conditions of Shimomura, de Bruyn Kops and Veeravalli. 

 

 

 

 

 

In Figure 10 below, the performance of each model is analyzed using the DNS data from 

Jacquin
61

. Our simulation matched the dimensionless initial conditions of Jacquin
61

 as 

represented in Table 4. The crosses, stars and dots represent the experimental data. The 

solid lines represent ω, the dashed lines k and the dotted lines k-smooth.  
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Figure 10: Performance comparison of k, ω and k-smooth rotation terms. 

 

 

Looking at the graph above, it is concluded that all three rotation models performed 

equally in this case, due to the somewhat identical turbulent Rossby numbers (1.22, 0.91 

and 1.10).   
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In Figure 11, the dimensionless initial conditions of Mansour, Cambon & Speziale
62

 were 

matched for ReT=27.24.  
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Figure 11: Performance comparison of k, ω and k-smooth rotation terms based on 

Mansour, Cambon and Speziale experimental data. a) Ro=0.37.  b) Ro=0.037. 
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In Figure 12, the dimensionless initial conditions of Mansour, Cambon & Speziale
62

 were 

matched for ReT=67.1.  

t

K
(m

2
/s

2
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

ManCamSpe2a: ReT=67.1, Ro=0.24
data
ω
k-smooth
k

 

t

K
(m

2
/s

2
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.4

0.5

0.6

0.7

0.8

0.9

1

ManCamSpe2b: ReT=67.1, Ro=0.1
data
ω
k-smooth
k

 
Figure 12: Performance comparison of k, ω and k-smooth rotation terms based on 

Mansour, Cambon and Speziale’s experimental data. a) Ro=0.24.  b) Ro=0.1. 
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We also evaluated all three rotational models for homogeneous flows; specifically, using 

data from Blaisdell’s elliptical flow as shown below in Figure 13: 

 

St

R
ij
/K
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Figure 13: Performance comparison of k, ω and k-smooth rotation terms for Blaisdell
7
. 

(homogeneous shear flow) 

 

 

From the graphs above, the k-smooth model is always consistently between the k and the 

ω-models. And sometimes the difference is so subtle that it is almost negligible. In the 

Blaisdell
7
 case however, the ω-model performs very poorly. Hence, it was decided that 

the k-smooth model performs the best. So, the OEC model was tested against other 

published data such as Wigeland & Nagib
63

, Jacquin
61

, Shimomura
66

, de Bruyn Kops
65

, 

Veeravalli
26

 and Mansour, Cambon & Speziale
62

. (The initial conditions are presented in 
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Tables 5 and 6 above). The rotating initial conditions for Wigeland & Nagib as well as de 

Bruyn Kops were already given above in section 3.1.3.  

In Figure 14 below, the asterisks, triangles and stars represent the experimental data of 

Wigeland & Nagib
63

 for low Reynolds number, while the dotted lines represent the 

predictions for the collision model. 
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Figure 14: Rotating isotropic decay of Wigeland & Nagib using the rotation model C

i
n . 

Turbulent kinetic energy versus time. 
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In Figure 15, the asterisks, crosses and squares represent the experimental data of 

Jacquin
61

, while the dashed lines represent the predictions of the collision model with 

C

i
n for rotation model. The numbers 140, 310 and 500 correspond to the turbulent 

Reynolds number: 
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           Figure 15: Rotating Isotropic decay of Jacquin. Turbulent kinetic energy versus 

time.  

 

 

 

 

In Figure 16, the asterisks represent the experimental data of Shimomura
66

 (for both 

irrotational and rotational cases), while the solid lines represent the predictions from our 
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collision model. As summarized in Table 6 above, the turbulent Reynolds numbers 

correspond respectively to 50, 343 and 1419. In addition, the data sets are for 2
k̂ .  
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Figure 16: Rotating isotropic decay of Shimomura. Turbulent kinetic energy versus time.  
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In Figures 17 and 18, the asterisks represent the experimental data and the solid lines 

represent the predictions from our collision model.  
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Figure 17: de Bruyn Kops

65
 rotating decaying turbulence. Turbulent kinetic energy versus 

time. 
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Figure 18: Veeravalli

26
’s decaying kinetic energy. Kinetic energy versus time.  
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In Figure 19, the asterisks represent the experimental data and the solid lines represent 

the predictions from the OEC model.  
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Figure 19: Rotating isotropic decay of Mansour, Cambon and Speziale. Turbulent kinetic 

energy versus time. a) ReT=27.2 and b) ReT=67.1 
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3.2. Rapid Distortion Theory 

            In turbulent shear flows, the turbulence-to-mean-shear time scale ratio 

defined as SK/ε varies between 0 and ∞. In the limiting cases when the ration SK/ε is 

exceptionally large, the evolution of the turbulence is then described exactly by rapid-

distortion theory or RDT. Previous work compared this model performance to that of a 

standard RDT solver (by Chartrand
64

). This time, we compare our model performance to 

that of RDT cases of Matsumoto
16

, Blaisdell
7
 and Lee & Reynolds

15
, with initial 

conditions summarized in Table7 below.  Lee & Reynolds experimented three cases: 

axisymmetric contraction (AC), axisymmetric expansion (AE) and plane strain (PS). 

Matsumoto’s case includes two DNS (high and low Reynolds numbers) with shear (S) 

deformation while Blaisdell has one elliptical (E) case. 

 

 Lee & Reynolds
15

 

(AC)         (AE)        (PS)          

Matsumoto
16

 

(S) 

Blaisdell
7
 

(E) 

ε(m
2
/s

3
) 0.018 0.122 0.25 0.185 1.79 

K(m
2
/s

2
) 1.0 1.0 1.0 0.2 1 

ν(m
2
/s) 10 10 10 1.2e-2 4.41e-2 

S (s
-1

) 1 0.5 1.0 28.28 3.0 

ReT 5.59 0.82 0.4 18.18 12.75 

SK/ ε 55.87 4.08 4 30.6 1.68 

 

Table 7: Initial conditions of Matsumoto, Lee & Reynolds and Blaisdell. 

 

 

Also, included in Table 8 are the non-zero mean velocity gradients for simple 

deformations: 
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 Axisymmetric 

contraction 

Axisymmetric 

expansion 

Plane  

Strain 

Shear 

11R  S  2S−  S  0 

22R  1

2
S−  

S  S−  0 

33R  1

2
S−  

S  0 0 

12R  0 0 0 S  

1/ 2(2 )ij ijS S S≡  3S  2 3S  2S−  2S  

 

Table 8: Tensor matrix for simple deformations. 

 

The graphs below summarize our results: 
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Figure 20: Lee & Reynolds’ axisymmetric contraction. The dots represent the DNS and 

the lines represent the OEC model prediction. SK/ε=55.9. 
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Figure 21: Lee & Reynolds’ axisymmetric expansion. The dots represent the DNS and 

the lines represent the OEC model prediction. SK/ε=5.08. 
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Figure 22: Lee & Reynolds’ plane strain. The dots represent the DNS and the lines 

represent the OEC model prediction. SK/ε=4. 
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Figure 23: Matsumoto’s shear deformation. The dots represent the DNS data and the lines 

represent the OEC model prediction. The large imposed strain (SK/ε=30.6) implies RDT 

is closely approximated.  
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The next simulation we did is based on Blaisdell
7
’s DNS. Here, the fact that both the 

strain ratio and the turbulent Reynolds number are small (respectively 1.68 and 12.75) in 

addition to the initial random field justifies the RDT approximation. Furthermore, we ran 

four simulations: one with only the return-model on, a second one with just the rotation 

model on, a third one with both return and rotation models on, and finally the RDT case 

(return and rotation models both turned off). Looking at the graph below, we were able to 

prove that both return and rotation have no effects in this case. The results are shown 

below in Figure 24 and 25. The dots represent the DNS and the lines show the model 

prediction. 

St

R
ij
/K

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

rotation
return+rotation

return

Blaisdell's elliptical flow: 
R11

R22

R33

R13

 

Figure 24: Blaisdell’s elliptical flow with a) return model on, b) rotation model on and c) 

both return and rotation models on. 
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Figure 25: Blaisdell’s elliptical flow: RDT 

 

 

 

 

3.3. Return-to-Isotropy Model 

For anisotropic cases, a term to model the return to isotropy behavior of turbulent flows 

was introduced. From equations (2.3.1), that term corresponds to the return-to-isotropy 

model for the Reynolds stresses. That is: 

            ( )�1

R ij
Dτ          (3.3.1) 

The oriented-eddy collision model includes two types of return representations: ˆ
ijR  and 

k -return. 
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3.3.1. ijR̂ -Return Model 

Initially, ijD was modeled in the following ways: 

( )2
ˆ ˆ

36
1

Re

i jk kA R
ij ij ij k

C
D R K δ

 
   = − −    +
 

     (3.3.1.1) 

( )2
ˆ

36
1

Re

i jk kB R K
ij ij ijN k

C
D R δ

 
   = − −    +
 

     (3.3.1.2) 

( )2 2

2 2
ˆ ˆ ˆ( ) ( )j li l ls ls

ls sl ls sl

k kk k R RC K K
ij il sj jl si ijK R R K R Rk k

D R R Rδ δ   = − + − −      (3.3.1.3) 

ˆ ˆ

ˆ ˆ
ˆis sj

nm nm

K

N

R RD

ij ijR R
D R

 = −  
       (3.3.1.4) 

( )2 ˆ ˆ( ) ˆis sj js si

ls sl

R R R RE K
ij ijR R K

D R
+

= −       (3.3.1.5) 

The first two equations are modeled after Rotta’s Reynolds Stress Transport 

(RST) return models. That is, both equations (3.2.2.1) and (3.2.2.2) work by relaxing 

each individual Reynolds stress towards an isotropic state (e.g. from an ellipse to a 

sphere) with ( B

ijD ) or without ( A

ijD ) regard to the other eddies. The only difference 

between the two equations is that one uses the individual kinetic energy of each eddy 

( K̂ ), while the second equation uses the average global kinetic energy ( K
N

); thus we refer 

to A

ijD  as Rotta-L (Local Rotta) and B

ijD  as Rotta-G (global Rotta). RC  is a tuned 

constant that we determined as 4 in the case of Rotta-L and 2.5 for Rotta-G.  Note that 

equations 3.2.2.3, 3.2.2.4 and 3.2.2.5 do not have a tunable constant; those were 
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generated by Perot & Chartrand
8
. With time, we hope to further explore the behavior of 

the last three equations, giving the fact that there are no tuning constants. 

 

3.3.2. K-Return Models 

  This k-return model is part of the orientation equation (2.3.2) and 

corresponds to: 

( )�1

K i
mτ          (3.3.2.1) 

The term im  here was modeled two ways: 

( )2

2

1 3
18

1
Re

A K k
i ki ki k

k

C
m K kδ

 
 

= − − 
 +
 

     (3.3.2.2) 

with 2 21
N

k k= ∑      (3.3.2.3) 

and 21 1( ) /( k )ki k iN N
K k k= ∑ ∑          (3.3.2.4) 

( )2

2

2 3
18

1
Re

B K k
i ki ki k

k

C
m N kδ

 
 

= − − 
 +
 

     (3.3.2.4) 

   with 21 ( / )ki k iN
N k k k= ∑      (3.3.2.5) 

 

The first equation is referred to as the “Kij return model” while the second one is the “Nij 

return model”.  Nij depends only on anisotropy in the orientations while Kij also responds 

to anisotropy in the lengths of the eddies. 1KC  and 2KC  are tuning constants that we 

determined to be respectively 4 and 1. So far and based on numerous simulations, we 

determined Kij to be the best performing return case as shown below in Figure 26.  
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At first it seems as the Kij-return model performs better than the Nij. However, looking 

closely, it is really difficult to come up with a conclusion. Kij seems to work best on the 

Rii terms while Nij best performs on the non-diagonal elements. It is our goal to further 

investigate this as part of the future work. 
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ij
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Figure 26: A

i
m  and B

i
m   model comparisons 

 

 

As previously mentioned, ( 1KC , 2KC ) are tuning constants that we determined to be 

respectively (4,10) for Nij, and (1,4)  for Kij. 
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3.4. Shear/Strain Flows 

In this section, we used various DNS as well as experimental cases to test our 

model performance; primary in the Reynolds stresses analysis of shear flows.  

Tables 9 and 10 below provide a summary with the values of the constants RC  and KC : 

 Matsumoto
16

 Le Penven
17 

A Le Penven
17

 B 

SK/ε 4.71 0.43 0.33 

ReT 152 612 846 

( , )
R K

C C  (4,10) (4,10) (4,10) 

Strain Tensor 0 30 0

0 0 0

0 0 0

 
 
 
 
 

 

5.48 0 0

0 1.99 0

0 0 7.47

 
 
 
 − 

 

8.86 0 0

0 2.36 0

0 0 6.50

 
 − 
 
 

 

 

Table 9: Matsumoto and Le Penven summary using (Rotta-L, Kij), (
A

ijD , A

i
m ) 

 

 Hallback -PS 

ReT 11  

( , )
R K

C C  (4,10) 

SK/ε 9 3 1 

Strain 

Tensor 

4.36 0 0

0 4.36 0

0 0 0

 
 − 
 
 

 

1.46 0 0

0 0 0

0 0 1.46

 
 
 
 − 

 

0.49 0 0

0 0 0

0 0 0.49

 
 
 
 − 

 

 

Table 10: Hallback’s summary using (Rotta-L, Kij) for Plane Strain ( A

ijD , A

i
m )  

 

 

3.5. Numerical Results: return-to-isotropy and shear/strain deformation 

To illustrate the return-to-isotropy above, three different cases were used: Le 

Penven
17

, Matsumoto
16

 and Hallback
28

. Only cases that are highly dependent on return-
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to-isotropy were used to determine the values of our constants as well as to validate the 

models. All initial conditions are shown above in Tables 9 and 10. The results are shown 

in Figures 27 and 28. 
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Figure 27: Le Penven - case A. a) Reynolds stresses and b) Kinetic energy 
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Figure 28: Le Penven - case B. a) Reynolds stresses and b) Kinetic energy 
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Correspondingly, the oriented-eddy collision prediction was compared to the 

homogeneous shear and strain flows: Matsumoto
16

, and Hallback
28

 (PS): 
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Figure 29: Matsumoto’s shear deformation. The dots represent his DNS and the lines 

represent our model prediction. a) Reynolds stresses and b) Dissipation and kinetic 

energy 
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Figure 30: Hallback – Plane Strain a) S=1 and b) S=3 
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3.6. Diffusion 

In equations (2.3.1) and (2.3.3), it was previously mentioned that the final term, 

( )ˆ( )T ijRν ν∇ + ∇ in equation (2.3.1) models the diffusive action of the Reynolds stresses 

while ( )( )T ikν ν∇ + ∇ accounts for the diffusive action of the orientation vectors ik . In 

one-dimension, ( )ˆ( )T ijRν ν∇ + ∇  corresponds to 

 ( )
ˆ

ij

t

R

y y
ν ν

∂∂
+

∂ ∂
       (3.6.1) 

ν  is the fluid viscosity while tν  corresponds to the eddy viscosity. We defined local and 

global eddy viscosities. As mentioned before, “local” implies that all calculations are 

done locally. In this case, the model uses a local tν  that is defined as 

2ˆ( )L

t L

K
Cν

ε
=         (3.6.2) 

with 
1ˆ ˆ
2

iiK R=         (3.6.3) 

and 1
L

C =         (3.6.4) 

Regarding the global eddy viscosities, two equations that are referred to as globabl1 and 

global2 ( )1 2 and G G

t t
ν ν are currently being evaluated. The global1 and global2 are similar, 

with the only difference that in the first case, the local kinetic energy and dissipation are 

being summed before dividing, whereas in the second case, the summation is done after 

the division. These concepts are illustrated below in equations (3.6.5) and (3.6.6):  
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( )
( )

2

1

1

ˆ
1G

t G

K
C

N
ν

ε

 ∑
 =
∑ 

 

       (3.6.5) 

 
2

2

2

ˆ1G

t G

K
C

N
ν

ε

  
= ∑  

   
       (3.6.6) 

  where 1 2 1
G G

C C= = and Σ  implies “summation over the orientations”. 

 

As expected for isotropic flows (the orientations vectors all have then same length), both 

global eddy viscosity formulas ( )1 2 and G G

t t
ν ν performed equally as shown in Figure 31 

below. The comparison was done using the DNS of Carati
58

: 
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Figure 31: Eddy viscosity comparison for both global equations 
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After implementing the diffusion (equation 3.6.1) in the source code along with all three 

variants of the eddy viscosity (equations 3.6.2, 3.6.5 and 3.6.6), various simulations were 

conducted in order to determine the efficacy of the eddy collision model. It is important 

to mention that the kinetic energy decay is no longer homogeneous (as previously) but 

instead is also spatially dependent. In the diffusion case, at one fixed time t, we are 

looking at both the kinetic energy and dissipation at different locations (y). The first step 

in the analysis is to determine which eddy viscosity equation best models the diffusion 

process. Starting with 1G

t
ν (eq 3.6.5), various simulations were conducted as part of the 

evaluation process. The first simulation was run against that of Chasnov
23

 and shows the 

diffusion process at different times t. Chasnov’s flow is inhomogeneous with the 

following characteristics: shearless, irrotational and isotropic with periodic boundary 

conditions. Note that in order to reduce the time step, we interpolated the original data as 

represented by the solid blue line. 
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Figure 32: Kinetic energy versus position at different times t. Chasnov at t=0. The stars 

represent data from Chasnov and the solid blue line corresponds to our interpolation.  

 

 

Next in Figure 33, we looked at the diffusion evolution at times t=1.375, 4.125 and 9.625 

seconds. The asterisks represent the data and the matching solid blue lines correspond to 

our simulations.  
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Figure 33: Kinetic Energy versus position at different times t. The matching blue lines 

correspond to the OEC simulations. a)linear-linear plot and b)log-linear plot. 
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The second diffusion simulation matched that of Barry Gilbert
59

. Gilbert assumes a 

shearless, irrotational and homogeneous flow. In addition, the flow has some levels of 

anisotropy. The stars represent data from Gilbert at times t=0, 0.0292, 0.0402, 0.0764, 

0.0884, 0.1154, 0.1274, 0.1634 and 0.2024 seconds. The matching solid lines correspond 

to the simulations. 
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Figure 34: R11 (kinetic energy component) versus position. The stars represent data from 

Gilbert at times t=0, 0.0292, 0.0402, 0.0764, 0.0884, 0.1154, 0.1274, 0.1634 and 0.2024 

seconds. The matching solid lines correspond to the OEC simulations.  

 

The final set of data that was looked at is more recent one (2002) and was published by 

Carati
58

. Carati’s data is unique in a sense that we have access to both the kinetic energy 

and the dissipation rate. Here although not ideal, we used zero boundary conditions 
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compared to periodic conditions in the two cases above (Chasnov, Gilbert). For reasons 

that remain unclear at this time, the OEC isotropic simulations decay a little faster than 

expected. The results obtained are shown below in Figures 35 and 36: 
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Figure 35: Kinetic Energy versus position at different times t. The stars represent data 

from Carati at times t=0, 0.071 and 0.191 seconds. The matching solid lines correspond 

to our simulations.  
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Figure 36: Dissipation versus position at different times t. The stars represent data from 

Carati at times t=0, 0.071 and 0.191 seconds. The matching solid lines correspond to our 

simulations. 
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CHAPTER 4 

CONCLUSIONS 

This project has allowed us to demonstrate that oriented-eddy collisional (OEC) 

models are an interesting, accurate, and viable approach to turbulence modeling.  We 

have demonstrated that: 

• Models exist in the regime between LES and RANS that have very attractive cost 

and accuracy attributes for current day design. 

• It is possible to increase the physics in turbulence models and reduce the number 

of tuned constants, while still having a cost effective model that can run on a PC. 

• The structure (orientation) of turbulence is just as important as the magnitude of 

the fluctuations.  Models that represent structure have huge advantages in 

capturing the turbulence physics. 

• The model can be interpreted as a model for the evolution of the two-point 

correlation.   Critical to this model – is decomposing the two-point correlation 

into self-similar ‘modes’. 

As with any turbulence model, a great deal of work remains to validate this model.  In 

this project we have clearly demonstrated that the approach is extensible and can 

accurately predict a wide variety of quite different but fundamental turbulent flow 

situations. 

Future work will complete the modeling of wall effects.  In addition, we expect 

this model to predict transition very well, and this will be demonstrated.   Finally, this 

model will be implemented in a 3D, unstructured, parallel, Navier-Stokes code so that 

more complex and practical flow situations can be tested. 
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